Graphs & Trees

Chen He Slides acknowledgements: Luana Micallef, and Alex Bigelow (Univ. Utah)

What is a graph?

A graph G consists of a collection of vertices (or nodes) V, and a set of edges E consisting of vertex pairs.

G = (V, E) where V = { A, B, C, D } E = { (A, B), (B, C), (B, D) }

A bunch of definitions

Data abstraction: Graph / Tree

Node-link diagrams

Force-directed layout

Physics model Edges = springs Nodes = repulsive particles

Force-directed layout

- + Flexible and aesthetic layout;
- + Able to add custom forces;
- Difficult to find the same node twice.

https://beta.observablehg.com/@mbostock/d3-force-directed-graph

Circular layout

Able to show various node attributes;

Nodes should be ordered carefully to

reduce edge crossings and;

place adjacent nodes close together.

http://www.keepthinking.it/media/w720/project_details/bcva_wc_wheel.png

Force-directed layout: higher data-ink ratio; easier to find clusters.

Circular layout

Adjacent edges can be bundled to reduce visual clutter.

Linear layout (arc diagrams)

Able to show various node attributes;

Nodes should be ordered carefully to

reduce edge crossings;

reveal clusters.

Linear layout (arc diagrams)

dag.h vgtl_dag.h memory Layered layout vgtl_dagbase.h list utility algorithm vector iterator string map vgtl_intadapt.h Nodes on one layer are ordered to reduce edge crossings vgtl_helpers.h Best for directed acyclic graphs (or close to acyclic graphs)

vgtl_config.h

cstring

vgtl_infinity.h

limits

[PeerChooser, 2008]

Purchase, H. C. Metrics for graph drawing aesthetics. *Journal of Visual Languages & Computing*, 2002. Bennett, Chris, et al. The aesthetics of graph visualization. *Computational aesthetics* 2007.

A few aesthetic criteria of graph layout

minimiseminimisemaximisesymmetryorthogonalityedge bendsedge crossessmallest angles

A controlled experiment

Min. edge bends

Min. edge crosses

Max. min. angles

orthogonality

symmetry

A controlled experiment

How long is **the shortest path** between two given nodes?

What is **the minimum number of nodes that must be removed** to **disconnect** two given nodes such that there is no path between them?

What is **the minimum number of edges that must be removed** to **disconnect** two given nodes such that there is no path between them?

A controlled experiment -- Results

Home Features Learn Develop Plugins Services Consortium

The Open Graph Viz Platform

Gephi is the leading visualization and exploration software for all kinds of graphs and networks. Gephi is open-source and free.

Runs on Windows, Mac OS X and Linux. Learn More on Gephi Platform »

Support us! We are non-profit. Help us to innovate and empower the community by donating only 8€:

Gephi tutorial

Costuros Loorn Douclos Diuging Convisos Concortium

The Open Graph Viz Platform by Francisco Gutiérrez, KU Leuven

exploration software for all kinds of graphs and

https://docs.google.com/document/d/1WB-FNIGYmopnOISVBBNFi5iQuXWBm4C

kfBPXjsh9mjk/edit?usp=sharing

Features
Quick start
Videos

Support us! We are non-profit. Help us to innovate and empower the community by donating only 8€:

Node-link diagrams

- + Intuitive
- + Can show overall structure, clusters, and paths
- + Flexible, many variations
- Not good for dense graphs
 - Hairball problem

Solutions for dense graphs

Adjacency matrix

Adjacency matrix

Patterns in adjacency matrix

Adjacency matrix

https://bost.ocks.org/mike/miserables/

Adjacency matrix

- + Great for dense graphs
- + Visually scalable
- + Can spot clusters
- Row order affects what you can see
- Abstract visualization
- Path-following is difficult

Combining node-link diagram and adjacency matrix

Large social networks: globally sparse but locally dense.

Graph + adjacency matrix

PivotGraph

Derived from categorical node attributes.

It starts with a selection of dimensions in a set of multivariate, connected data. It then **aggregates** the data into **discrete categories**.

Size of nodes and edges related to number of aggregated original nodes and edges.

- + Good for seeing **trends** in multivariate data.
- + Clearly displays **the relative strength or size of connections** between vertices.
- + Because it aggregates data, it's very scalable and good for large data sets.
- Results in some **loss of information**, as only a **limited number of dimensions** can be displayed at a time.
- Only for **discrete-dimensional data**.
- Only **be used for data with some sort of connectivity** (email correspondence, social networks, etc.).

Visualizing graphs

A graph with **one root node** and various leaf nodes (parent-child relation), and **only one path between any two nodes**.

Node-link diagrams

Nodes are distributed in space, connected by straight or curved lines;

Typical approach is to use 2D space to break apart breadth and depth;

Often **space** is used to communicate **hierarchical orientation**.

https://philogb.github.io/jit/static/v20/Jit/Examples/Spacetree/example1.html http://mbostock.github.io/d3/talk/20111018/tree.html

Indentation

Place all items along vertically spaced rows;

Indentation used to show parent/child relationships;

Commonly used as a component in an interface;

Often requires a great deal of scrolling.

DEVICES	Name				
bitsy	Applications				
Remote Disc	Desktop				
	Documents				
▶ SHARED	Downloads				
V PLACES	🔻 🧓 Dropbox				
💹 Desktop	🕨 💹 Brian Photos				
🏠 miriah	🕨 词 computer_stuff				
Applications	🕨 💭 cv				
💱 Dropbox	infovis_readings				
SEARCH FOR	interviews				
SEARCHTOR	🕨 🧊 jobs				
	🕨 💭 mail				
	🔻 👼 my_papers				
	biomed-bookchapter				
	cell_primer				
	V Jan DePace2010				
	submission2_201105				
	v submission3_201108				
	comments				
	Depace2011_refs rebuilt.bdb				
	🖻 🧓 draits				
	👻 🧱 Figure Lai				
	Eigure 2 ai				
	Figure2.ai				
	Figure3 ai				
	Figure4 ai				
	Figure 5.ai				
	Figure6.ai				
	Figure7.ai				
	FigureS1.ai				
	FigureS2.ai				
	FigureS3.ai				
	🛃 FigureS4_fkh.ai				
	👼 FigureS4_ftz.ai				
	😽 FigureS4_gt.ai				

Space-filling techniques -- Icicle layout

Using adjacency to represent hierarchy.

A length encoding for the size of nodes.

flare									
	≤;s			<u>e</u>	animate	query	analytics	data	display physics
operator	data	legend	events Visualization axis	Stats Stats Arrays Coors	Tween Transition Easing Transitioner interpolate	Query methods	optimization cluster graph	converters	DirtySprite TextSprite Simulation NBodyForce
filer encoder label layout	Tree Treebuilder DataSprite ScaleBinding NodeSprite DataList Data	LegendRange Legend SelectionControl TooltipControl	CartesianAxes Axis	Fibonacci Heap ColorPalette	Interpolator		AspectRatioBanker HierarchicalCluster MaxFlowMinCut	GraphMLConverter	
Distortion Labeler Axistaryout Ferrer Listofut Storeockreat Layout Storeockreat Layout CriceLayout CriceLayout RadaTreeLayout NodeLInkTreeLayout									

Space-filling techniques -- Sunburst layout

Using adjacency to represent hierarchy.

A length encoding for the size of nodes.

https://bl.ocks.org/kerryrodden/7090426 https://observablehq.com/@d3/zoomable-sunburst

Space-filling techniques -- Treemaps

Using **containment** to represent hierarchy;

Pack a lot of info into a limited space.

World (6,964,195,249)						
Asia 4,174,984,067						
						Southern Asia
						South-Eastern Asia
		Easter	rn Asia		Wes	stern Asia
Africa 1,060,491,021		Americas 958,306,818			Europe 732,609,380	
			South	America		Eastern Europe
Eastern Africa	Western Africa					
						Southern Europe
Northern Africa	Middle Africa	Northern America	Central	America	Vestern Europe	Northern Europe

http://bl.ocks.org/ganeshv/6a8e9ada3ab7f2d88022

Treemaps

- + provides single view of entire tree
- + easy to spot small / large node
- difficult to accurately read depth

World (6,964,195,249)								
Asia 4,174,984,067								
							Sout	hern Asia
							South-Eas	stern Asia
			Factor			10/		
Africa			Americas	rn Asia		Europe	stern Asia	
1,060,491,021			958,300,818	South	America	732,609,380	Easter	rn Europe
Eastern Africa	Westerr	Africa						
				0			Souther	rn Europe
Northern Africa	Middle Africa		Northern America	Central	aribbean	Vestern Europe	Norther	rn Europe

http://treevis.net/

Space-filling techniques